jira-ai-fixer/docs/executive-en.md

344 lines
14 KiB
Markdown

# JIRA AI Fixer
## Executive Proposal
**Date:** February 2026
**Version:** 1.1
**Classification:** Product Documentation
---
## Executive Summary
### The Problem
Support teams face growing challenges in resolving Support Cases:
| Challenge | Impact |
|-----------|--------|
| **Response time** | Initial analysis consumes hours of senior developer time |
| **Growing backlog** | Issues accumulate while team focuses on urgent demands |
| **Variable quality** | Dependency on individual knowledge about the code |
| **Concentrated knowledge** | Few specialists know all modules |
### The Solution
An **Artificial Intelligence** system that:
1. **Monitors** new Support Cases in JIRA automatically
2. **Analyzes** the problem and identifies affected source code
3. **Proposes** specific fixes in COBOL, SQL, and JCL
4. **Documents** the analysis directly in JIRA
5. **Creates** branches with fixes for human review
### Expected Result
```
┌─────────────────────────────────────────────────────────────────────────────┐
│ BEFORE vs AFTER │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ BEFORE AFTER │
│ ────── ───── │
│ Issue created Issue created │
│ ↓ ↓ │
│ Dev analyzes (2-4h) AI analyzes (5min) │
│ ↓ ↓ │
│ Search code (1-2h) Code identified │
│ ↓ ↓ │
│ Investigate cause (2-4h) Cause + suggested fix │
│ ↓ ↓ │
│ Develop fix (2-4h) Dev reviews and approves │
│ ↓ ↓ │
│ Review + deploy Review + deploy │
│ │
│ TOTAL: 8-14 hours TOTAL: 2-4 hours │
│ │
│ ✅ 60-70% reduction in resolution time │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
```
---
## Why Now?
### 1. Mature Technology
Language models (GPT-4, Claude, Llama) have reached sufficient quality for code analysis and generation, including legacy languages like COBOL.
### 2. Competitive Advantage
Leading companies are adopting AI to accelerate development. Those who don't adopt will fall behind in productivity.
### 3. Manageable Volume
With typical support volumes, the risk is low and the environment is ideal to validate the solution before scaling.
### 4. Accessible Cost
Operational cost is minimal, especially with free/low-cost LLM options available.
---
## How It Works
### Simplified Flow
```
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Support │ │ AI │ │ Dev │
│ Case │────▶│ Analyzes │────▶│ Reviews │
│ (JIRA) │ │ + Suggests │ │ + Approves │
└──────────────┘ └──────────────┘ └──────────────┘
5min 5min 30min-2h
┌─────────────────────┐
│ JIRA Comment: │
│ - Root cause │
│ - Affected files │
│ - Proposed fix │
│ - Link to PR │
└─────────────────────┘
```
### Real Example
**Issue:** "Transaction being declined with code 51 even with available balance"
**AI Response (in 5 minutes):**
```
📋 AUTOMATIC ANALYSIS
🔍 Identified Cause:
The AUTH.CBL program is comparing the WS-AVAILABLE-BALANCE field
with format PIC 9(9)V99, but the value returned from HOST uses
PIC 9(11)V99, causing truncation.
📁 Affected File:
- src/cobol/AUTH.CBL (lines 1234-1256)
💡 Proposed Fix:
Change WS-AVAILABLE-BALANCE declaration to PIC 9(11)V99
and adjust the comparison in SECTION 3000-VALIDATE.
📊 Confidence: 87%
🔗 PR with fix: bitbucket.example.com/projects/PRODUCT/repos/...
```
### Security: AI Does Not Alter Production Code
```
┌─────────────────────────────────────────────────────────────────────────────┐
│ SEPARATION OF RESPONSIBILITIES │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ CLIENT Repository (production) │
│ Product-Client-Fork │
│ ├── AI has access: READ ONLY │
│ └── Changes: ONLY by developers │
│ │
│ AI Repository (isolated) │
│ Product-Client-AI │
│ ├── AI has access: READ AND WRITE │
│ └── Purpose: Branches with fix suggestions │
│ │
│ Approval Flow: │
│ 1. AI creates branch in isolated repository │
│ 2. AI opens Pull Request to client repository │
│ 3. HUMAN developer reviews │
│ 4. HUMAN developer approves or rejects │
│ 5. Only then code goes to production │
│ │
│ ✅ 100% of changes go through human review │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
```
---
## Investment
### Pricing Models
| Model | Description | Price |
|-------|-------------|-------|
| **SaaS** | Hosted, managed by vendor | $2,000 - $5,000/month |
| **On-Premise License** | Self-hosted, perpetual | $50,000 - $100,000 one-time |
| **Enterprise** | Custom deployment + support | Contact for quote |
### ROI Calculation
```
Senior developer hourly cost: ~$40-80
Average time saved per issue: 6-10 hours
Monthly savings (10 issues): $2,400 - $8,000
SaaS payback: Immediate positive ROI
Enterprise license payback: 12-24 months
```
### Intangible Benefits
| Benefit | Impact |
|---------|--------|
| **Standardization** | All issues analyzed with same rigor |
| **Documentation** | Complete analysis history in JIRA |
| **Knowledge** | AI learns patterns, doesn't depend on people |
| **Speed** | Initial response in minutes, not hours |
| **Team morale** | Devs focus on complex problems, not repetitive ones |
---
## Deployment Options
### Option 1: SaaS (Recommended for Quick Start)
```
✅ Fastest time-to-value (days, not months)
✅ No infrastructure to manage
✅ Automatic updates
✅ Included support
```
### Option 2: On-Premise (For Compliance Requirements)
```
✅ 100% data stays in your infrastructure
✅ Air-gapped option (no internet required)
✅ Full control over updates
✅ One-time license cost
```
### Option 3: Hybrid
```
✅ You host, we manage
✅ Balance of control and convenience
✅ Flexible pricing
```
---
## Security and Compliance
### LLM Provider Options
| Provider | Data Location | Compliance Level |
|----------|---------------|------------------|
| **Azure OpenAI** | Your Azure tenant | Enterprise |
| **Local (Ollama)** | Your servers | Air-gapped |
| **OpenAI API** | OpenAI cloud | Standard |
| **OpenRouter** | Various | Development |
### Compliance Features
- ✅ Data segregation by client/product
- ✅ Complete audit trail
- ✅ Configurable log retention
- ✅ 100% on-premise deployment option
- ✅ Air-gapped deployment available
- ✅ No code sent to public training datasets
---
## Risks and Mitigations
| Risk | Probability | Mitigation |
|------|-------------|------------|
| **AI suggests incorrect fix** | Medium | Mandatory human review in 100% of cases |
| **Team resistance** | Low | Position as assistant, not replacement |
| **Code security** | Configurable | Choose Azure/local for compliance |
| **LLM cost increases** | Low | Multiple provider options |
### Conservative Approach
The system is designed for phased adoption:
```
Phase 1: Analysis and suggestion only
AI comments in JIRA, doesn't create code
Phase 2: Code generation in isolated repository
Human decides whether to use or not
Phase 3: Automatic Pull Requests
Human still approves
Phase 4: Auto-merge (only for high-confidence fixes)
Only after months of validation
```
---
## Implementation Timeline
```
┌─────────────────────────────────────────────────────────────────────────────┐
│ IMPLEMENTATION ROADMAP │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ Week 1-2 Week 3-4 Week 5-6 Week 7+ │
│ ──────── ──────── ──────── ──────── │
│ Setup + Code Business Go-Live + │
│ Integrations Indexing Rules Refinement │
│ │
│ ✓ JIRA ✓ COBOL ✓ Modules ✓ Production │
│ ✓ Bitbucket ✓ SQL ✓ Validation ✓ Adjustments │
│ ✓ Portal ✓ JCL ✓ Testing ✓ Support │
│ │
│ │ │
│ ▼ │
│ LIVE │
│ ~5-7 weeks │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
```
---
## Solution Differentiators
### Why JIRA AI Fixer?
| Aspect | Generic Tools | JIRA AI Fixer |
|--------|---------------|---------------|
| **JIRA Integration** | ❌ Manual | ✅ Automatic |
| **Domain knowledge** | ❌ Generic | ✅ Configurable business rules |
| **COBOL expertise** | ⚠️ Limited | ✅ Optimized for mainframe |
| **Support Case flow** | ❌ Doesn't exist | ✅ Native |
| **Deployment options** | ❌ Cloud only | ✅ SaaS, on-prem, or air-gapped |
| **Customization** | ❌ Generic | ✅ Fully configurable |
---
## Next Steps
### To Get Started
1. **Schedule Demo** - See JIRA AI Fixer in action with your data
2. **Pilot Program** - 30-day trial with limited scope
3. **Full Deployment** - Production rollout with support
### Contact
- **Email:** sales@yourcompany.com
- **Demo Request:** https://jira-ai-fixer.yourcompany.com/demo
---
## Conclusion
**JIRA AI Fixer** represents an opportunity to:
**Increase productivity** of support team by 60%+
**Reduce response time** from hours to minutes
**Standardize quality** of analyses
**Retain knowledge** independent of people
**Choose your deployment** - SaaS, on-prem, or air-gapped
The timing is ideal: mature technology, flexible deployment options, and proven ROI.
---
**JIRA AI Fixer - Intelligent Support Case Resolution**
*Ready to transform your support workflow?*